Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Tryptophan Res ; 10: 1178646917735098, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051706

RESUMO

Indoleamine 2,3-dioxygenase-2 (IDO2) is 1 of the 3 enzymes that can catalyze the first step in the kynurenine pathway of tryptophan metabolism. Of the 2 other enzymes, tryptophan 2,3-dioxygenase is highly expressed in the liver and has a role in tryptophan homeostasis, whereas indoleamine 2,3-dioxygenase-1 (IDO1) expression is induced by inflammatory stimuli. Indoleamine 2,3-dioxygenase-2 is reportedly expressed comparatively narrow, including in liver, kidney, brain, and in certain immune cell types, and it does not appear to contribute significantly to systemic tryptophan catabolism under normal physiological conditions. Here, we report the identification of an alternative splicing pattern, including the use of an alternative first exon, that is conserved in the mouse Ido1 and Ido2 genes. These findings prompted us to assess IDO2 protein expression and enzymatic activity in tissues. Our analysis, undertaken in Ido2 +/+ and Ido2-/- mice using immunohistochemistry and measurement of tryptophan and kynurenine levels, suggested an even more restricted pattern of tissue expression than previously reported. We found IDO2 protein to be expressed in the liver with a perinuclear/nuclear, rather than cytoplasmic, distribution. Consistent with earlier reports, we found Ido2 -/- mice to be phenotypically similar to their Ido2+/+ counterparts regarding levels of tryptophan and kynurenine in the plasma and liver. Our findings suggest a specialized function or regulatory role for IDO2 associated with its particular subcellular localization.

2.
Cytokine ; 78: 79-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26687629

RESUMO

Cerebral malaria (CM) has a high mortality rate and incidence of neurological sequelae in survivors. Hypoxia and cytokine expression in the brain are two mechanisms thought to contribute to the pathogenesis of CM. The cytokines interferon (IFN)-γ and lymphotoxin (LT)-α and the chemokine CXCL10 are essential for the development of CM in a mouse model. Furthermore, serum IFN-γ protein levels are higher in human CM than in controls, and CXCL10 is elevated in both serum and cerebrospinal fluid in Ghanaian paediatric CM cases. Astrocytes actively participate in CNS pathologies, becoming activated in response to various stimuli including cytokines. Astrocyte activation also occurs in murine and human CM. We here determined the responsiveness of mouse and human astrocytes to IFN-γ and LT-α, with the aim of further elucidating the role of astrocytes in CM pathogenesis. Initially we confirmed that Ifn-γ and Cxcl10 are expressed in the brain in murine CM, and that the increased Cxcl10 expression is IFN-γ-dependant. IFN-γ induced CXCL10 production in human and murine astrocytes in vitro. The degree of induction was increased synergistically in the presence of LT-α. IFN-γ induced the expression of receptors for LT-α, while LT-α increased the expression of the receptor for IFN-γ, in the astrocytes. This cross-induction may explain the synergistic effect of the two cytokines on CXCL10 production. Expression of these receptors also was upregulated in the brain in murine CM. The results suggest that astrocytes contribute to CM pathogenesis by producing CXCL10 in response to IFN-γ and LT-α.


Assuntos
Astrócitos/imunologia , Quimiocina CXCL10/genética , Citocinas/fisiologia , Interferon gama/imunologia , Linfotoxina-alfa/imunologia , Malária Cerebral/imunologia , Animais , Encéfalo/imunologia , Linhagem Celular , Células Cultivadas , Quimiocina CXCL10/metabolismo , Citocinas/genética , Modelos Animais de Doenças , Gana , Humanos , Malária Cerebral/etiologia , Camundongos , Fator de Transcrição STAT1 , Fator de Necrose Tumoral alfa , Regulação para Cima/efeitos dos fármacos
3.
Biotechniques ; 59(4): 223-4, 226, 228-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26458550

RESUMO

Here we report a simple new method for exposing cells to normoxic and hypoxic conditions using vacuum bags, normally employed for food storage, to establish and maintain low oxygen levels in vitro. Vacuum bags were gassed with a mixture containing specified levels of oxygen, then sealed, creating a hypoxic microenvironment for cells cultured in flasks placed therein. Oxygen levels in the gas mixture and culture medium in flasks inside the sealed bags equilibrated after two hours of incubation. The vacuum bags maintained low oxygen levels (either <2% or 5%) in medium for at least 4 days. Human fetal astrocytes grew normally in flasks for at least 4 days in a 5% oxygen/ 5% CO2/ 90% nitrogen atmosphere, but viability decreased at <2% oxygen. Vacuum bags can accommodate varying oxygen levels that would otherwise require systems with separate chambers or modules, but are less useful when repeated experimental manipulations of individual cultures are required.


Assuntos
Técnicas de Cultura de Células/métodos , Hipóxia Celular , Oxigênio/metabolismo , Astrócitos/metabolismo , Humanos , Nitrogênio/metabolismo , Cultura Primária de Células , Vácuo
4.
Front Immunol ; 5: 485, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25346733

RESUMO

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway (KP). The depletion of tryptophan and formation of KP metabolites modulates the activity of the mammalian immune, reproductive, and central nervous systems. IDO and TDO enzymes can have overlapping or distinct functions depending on their expression patterns. The expression of TDO and IDO enzymes in mammals differs not only by tissue/cellular localization but also by their induction by distinct stimuli. To add to the complexity, these genes also have undergone duplications in some organisms leading to multiple isoforms of IDO or TDO. For example, many vertebrates, including all mammals, have acquired two IDO genes via gene duplication, although the IDO1-like gene has been lost in some lower vertebrate lineages. Gene duplications can allow the homologs to diverge and acquire different properties to the original gene. There is evidence for IDO enzymes having differing enzymatic characteristics, signaling properties, and biological functions. This review analyzes the evolutionary convergence of IDO and TDO enzymes as tryptophan-catabolizing enzymes and the divergent evolution of IDO homologs to generate an enzyme family with diverse characteristics not possessed by TDO enzymes, with an emphasis on the immune system.

5.
Artigo em Inglês | MEDLINE | ID: mdl-25177551

RESUMO

There are two theories that seek to explain the pathogenesis of cerebral malaria, the mechanical obstruction hypothesis and the immunopathology hypothesis. Evidence consistent with both ideas has accumulated from studies of the human disease and experimental models. Thus, some combination of these concepts seems necessary to explain the very complex pattern of changes seen in cerebral malaria. The interactions between malaria parasites, erythrocytes, the cerebral microvascular endothelium, brain parenchymal cells, platelets and microparticles need to be considered. One factor that seems able to knit together much of this complexity is the cytokine interferon-gamma (IFN-γ). In this review we consider findings from the clinical disease, in vitro models and the murine counterpart of human cerebral malaria in order to evaluate the roles played by IFN-γ in the pathogenesis of this often fatal and debilitating condition.


Assuntos
Interferon gama/metabolismo , Malária Cerebral/etiologia , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Interferon gama/genética , Malária Cerebral/diagnóstico , Malária Cerebral/metabolismo , Transdução de Sinais
6.
Bioorg Med Chem Lett ; 22(24): 7641-6, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23122865

RESUMO

The kynurenine pathway is responsible for the breakdown of the majority of the essential amino acid, tryptophan (Trp). The first and rate-limiting step of the kynurenine pathway can be independently catalysed by tryptophan 2,3-dioxygenase (Tdo2), indoleamine 2,3-dioxygenase 1 (Ido1) or indoleamine 2,3-dioxygenase 2 (Ido2). Tdo2 or Ido1 enzymatic activity has been implicated in a number of actions of the kynurenine pathway, including immune evasion by tumors. IDO2 is expressed in several human pancreatic cancer cell lines, suggesting it also may play a role in tumorigenesis. Although Ido2 was originally suggested to be a target of the chemotherapeutic agent dextro-1-methyl-tryptophan, subsequent studies suggest this compound does not inhibit Ido2 activity. The development of selective Ido2 inhibitors could provide valuable tools for investigating its activity in tumor development and normal physiology. In this study, a library of Food and Drug Administration-approved drugs was screened for inhibition of mouse Ido2 enzymatic activity. A number of candidates were identified and IC(50) values of each compound for Ido1 and Ido2 were estimated. The Ido2 inhibitors were also tested for inhibition of Tdo2 activity. Our results showed that compounds from a class of drugs used to inhibit proton pumps were the most potent and selective Ido2 inhibitors identified in the library screen. These included tenatoprazole, which exhibited an IC(50) value of 1.8µM for Ido2 with no inhibition of Ido1 or Tdo2 activity detected at a concentration of 100µM tenatoprazole. These highly-selective Ido2 inhibitors will be useful for defining the distinct biological roles of the three Trp-catabolizing enzymes.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...